

09/05/2025

To: Dr. Usamah Rodgers, Superintendent
From: Jasmine Handsome
Subject: Innovation Proposal – Virtual Reality for Experiential Learning

Dear Dr. Rodgers,

I am writing to propose an idea that I believe could make a real difference for the students in DeSoto ISD, especially those who don't always have access to engaging hands-on learning that helps concepts connect to real world applications. In my classroom and across our schools, I've seen how traditional methods can limit these connections to real-world ideas, which affects both understanding and retention. As we continue working toward our Board Goals around College, Career, and Military Readiness (CCMR), I see a clear opportunity to better serve our underserved scholars by using innovative tools to open new doors for them.

Proposed Solution

My proposal is to integrate the use of virtual reality (VR) technology in our classrooms. VR gives students the chance to step inside their learning, whether that's exploring a scientific process, visiting a place they might not otherwise see, or trying out a career in a safe, simulated space. Instead of reading about something or watching a video, students can interact with it directly, which makes learning more memorable and meaningful.

For example, in science, VR could allow students to carry out chemical reactions virtually, watch plants grow in real time, or complete a dissection without the cost, safety concerns, or accessibility barriers of a traditional lab. These experiences would level the playing field for students with special needs, giving them access to the same opportunities as their peers.

Benefits of the Solution

The biggest benefit of VR is that it makes learning active instead of passive. Students are more engaged, more curious, and more willing to take risks when they can explore in a safe, repeatable environment. For students who need extra support, VR also allows for individualized pacing, so they can revisit an experience as many times as needed until the concept makes sense. Overall, this approach aligns with our goals of creating equitable access and preparing students for life beyond the classroom.

This is also where VR reflects Disruptive Innovation in practice. As Christensen and colleagues explain, disruptive innovations often start small, meeting the needs of underserved populations, and then grow to reshape the entire system. In the same way, integrating VR with not only our

special needs population, but our general education and underserved students, could spark a shift in how all students within this district engage with learning, moving us from traditional, lecture-based instruction toward a more immersive, student-centered experience. Ultimately, we have stated that a goal and best practice is to be student-centered, but do our current teaching practices truly support the best outcomes for all students?

Specific Actions

I recommend a phased rollout:

- **Year 1 (Pilot):** Begin with science units (such as ecosystems) and career exploration modules. Use small-group VR sessions with both general education and special needs students.
 - **Measure success:** Collect data on student engagement (participation rates, time on task), comprehension (short assessments before and after VR activities), and student/parent feedback surveys.
- **Year 2 (Expansion):** Add VR to more subjects, provide structured professional development for teachers, and design lesson templates to make VR easy to implement.
 - **Measure success:** Track teacher adoption rates, lesson integration frequency, and ongoing student performance gains.
- **Year 3 (Scaling):** Fully integrate VR into the curriculum, embed teacher training into professional development, and build the technical support needed for sustainability.
 - **Measure success:** Evaluate long-term student achievement data, CCMR readiness indicators, and equitable access across campuses.

Resources Needed

To make this innovation both successful and sustainable, we would need to invest in the following key areas:

- VR equipment and software: A small set of VR headsets with compatible educational content, beginning with science and career exploration modules that directly align with CCMR goals.
- Professional development: Targeted training for teachers to confidently integrate VR into instruction, paired with coaching and shared lesson resources to maximize impact.
- Technical support: A plan for setup, troubleshooting, and maintenance to ensure smooth classroom use without disruptions

Conclusion

By starting with a pilot program for implementation, we can test this innovation on a small scale,

refine it based on student and teacher feedback, and then expand in a sustainable way. My goal is to give our students, not just some, but all, opportunities to learn in ways that are engaging, hands-on, and directly connect them to the world around them. I believe VR can be a powerful tool to help us get there.

Thank you for considering this proposal. I would welcome the chance to discuss how this could take shape in our schools.

Kind regards,
Jasmine Handsome
K-12 Special Education Instructor
AVID Implementation Specialist

References

Christensen, C. M., Horn, M. B., & Johnson, C. W. (2016). *Disrupting class: How disruptive innovation will change the way the world learns* (2nd ed.). McGraw-Hill Education.

Radianti, J., Majchrzak, T. A., Fromm, J., & Wohlgemant, I. (2020). A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. *Computers & Education*, 147, 103778.

<https://doi.org/10.1016/j.compedu.2019.103778>